
1 INTRODUCTION 

Upper bound limit analysis, otherwise known as the kinematic method of limit analysis, is a 
rigorous and effective means of evaluating collapse loads of structures and the soils/rocks on 
which they rest. As discussed in depth by Chen (1975), the technique applies to perfectly 
plastic materials whose flow rule obeys normality (associativity), and it hinges on 
constructing a kinematically admissible velocity field (collapse mechanism) for a given 
problem, where kinematic admissibility implies that the plastic flow rule and boundary 
conditions are satisfied. By balancing the rate of work dissipated within the material to the 
rate of work done by external forces, one may evaluate a load which is a rigorous bound on 
the true collapse load. This bound is an upper bound for loads inducing collapse (the case 
usually considered in the literature) and a lower bound for loads resisting collapse.  

Limit analysis has origins as an elegant analytical or semi-analytical technique, and it 
continues to be used in this context to this day (e.g., Michalowski, 1997, 2004, 2007; Soubra, 
1999, Maciejewski & Jarzȩbowski, 2004; Soon & Drescher, 2007; Hambleton & Drescher, 
2011). Analytical works often employ a collapse mechanism consisting of rigid blocks 
separated by velocity discontinuities, where a velocity discontinuity is regarded as a material 
layer of vanishing thickness across which a jump in velocity occurs (Chen 1975). In this 
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approach, kinematic admissibility is ensured from the outset by composing a hodograph, or 
velocity diagram, in which velocity jumps between rigid blocks satisfy the condition imposed 
by the flow rule. The mechanism usually consists of free variables that can assume any value 
within a certain range (e.g., interior angles of the blocks), and thus an optimization procedure 
is employed to find values of these free variables that minimize the collapse load. For very 
simple mechanisms the minimum can be found analytically, but in general it is necessary to 
employ a numerical optimization scheme that is suitable for a general nonlinear objective 
function (e.g., Levenberg–Marquardt algorithm).   

The concepts of limit analysis also have been utilized as the basis for efficient numerical 
methods (e.g., Anderheggen & Knöpfel, 1972; Bottero et al., 1980; Sloan & Kleeman 1995; 
Lyamin & Sloan, 2002; Chen et al. 2003; Krabbenhøft et al., 2005; Makrodimopoulos & 
Martin, 2007, 2008; Smith & Gilbert, 2007). With the exception of the work by Smith & 
Gilbert (2007), these numerical approaches rest on discretizing the problem domain using 
finite elements and then minimizing the load (again evaluated via energy balance) subject to 
constraints on the interpolated velocity field imposed by the flow rule and boundary 
conditions. The velocity field typically varies continuously within each element using linear 
or quadratic interpolation of nodal velocities, and element edges correspond to velocity 
discontinuities. In contrast to semi-analytical limit analysis, in which the number of free 
variables is quite limited, procedures for numerical limit analysis are able to take advantage 
of large-scale optimization schemes such as conic programming, which can efficiently 
operate with thousands or hundreds of thousands of free variables. 

A central difference between the analytical and numerical forms of limit analysis is that 
the optimal location of discontinuities is usually determined as part of the solution procedure 
in the analytical method, whereas any discontinuities present in numerical methods have a 
fixed position as a consequence the mesh being predefined. Indeed, numerical methods 
usually allow for arbitrarily complex zones of continuous deformation but are incapable of 
reproducing global velocity discontinuities present in a collapse mechanism unless the 
location of the discontinuity is known a priori, in which case element edges can be aligned 
with the known discontinuity as part of the procedure for mesh generation. The formulation 
proposed by Smith & Gilbert (2007), which is not a finite element method, revolves around 
finding the optimal location of discontinuities by searching over a large set of potential 
locations obtained from connecting nodes of a grid laid out over the problem domain. 

In this paper, a method for finding the optimal location of discontinuities using finite 
elements is introduced. The formulation is based on successively perturbing velocities and 
nodal coordinates beginning from an initial solution, where the initial solution is obtained 
from a predefined mesh of finite elements using well-established procedures for numerical 
limit analysis. The formulation presented is for triangular rigid elements (plane strain) 
separated by velocity discontinuities, and it is therefore identical to the classical limit analysis 
method employing sliding rigid blocks (cf. Chen 1975). Indeed, the terms “element” and 
“block” are viewed as being interchangeable, and “nodes” of the finite element mesh are 
none other than the vertices of the triangular blocks. It is assumed in this paper that the 
material is homogenous and characterized by the Mohr-Coulomb yield condition, with 
friction angle and cohesion denoted  and c, respectively. Furthermore, the material is 
considered to be weightless, although it is possible to include body forces in the formulation 
(Hambleton & Sloan, 2011). 

In Section 2, exact expressions of the conditions on velocity jumps between elements, as 
well are the limit load, are derived. The proposed numerical formulation based on the 
perturbation method is presented in Section 3, and its application to the benchmark problem 
of passive earth pressure behind a smooth retaining wall is considered in the penultimate 
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section. Detailed analysis of the proposed numerical method, as well as additional examples 
and verifications, will be provided in a forthcoming paper (Hambleton & Sloan, 2011). 

2 GENERAL EQUATIONS FOR SLIDING RIGID ELEMENTS 

As in analytical methods for limit analysis (cf. Chen 1975), the proposed formulation is based 
on splitting the problem domain into a number of rigid triangular elements whose edges 
correspond to velocity discontinuities. The initial finite element mesh is chosen somewhat 
arbitrarily, although it should be emphasized that it is possible to select an initial mesh for 
which no kinematically admissible velocity field exists. Here it is assumed that an admissible 
velocity field exists for the initial mesh. 

Fig. 1 shows the line segment corresponding to a velocity discontinuity at the edge shared 
by two adjacent elements in a finite element mesh. Each discontinuity, or edge, is assigned a 
global number that is designated by the index k (k = 1,2,…,Nedges, where Nedges is the total 
number of edges). Using the convention shown in Fig. 1, the subscripts i and j denote 
quantities in the elements adjacent to edge k, as well as the nodes corresponding to the 
endpoints of the edge. Velocity vectors in the elements associated with discontinuity k are 
denoted as 

 , , , ,,
T T

i x i y i j x j y jv v v v       v v  (1) 

In Eq. (1), vx,i and vy,i are components of velocity in the x-direction and y-direction (Fig. 1), 
respectively, for element i, and vx,j and vy,j are components of velocity for element j. Node i is 
located at coordinates (xi,yi), and coordinates of node j are (xj,yj). 

In the sections that follow the condition imposed by the flow rule on velocity jumps 
between elements is derived, as well as an expression of the limit load based on balancing the 
total rate of work done by external forces with the total rate of dissipation within the material. 

 
 
 

 

Fig. 1. Notation for a discontinuity (element edge) and velocities in adjacent elements (all quantities positive 
as drawn) 
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2.1 Jump condition 

The associated flow rule for the Mohr-Coulomb yield condition requires that the jump in 
velocity between elements satisfies the following condition (Chen 1975) 

 , , tann k t kv v     (2) 

where vn,k and vt,k are, respectively, jumps in the components of velocity normal and 
tangential to discontinuity k. The jumps are calculated as  

 , , , , , ,,n k n i n j t k t i t jv v v v v v       (3) 

where vn and vt denote components of velocity in directions normal and tangential to the 
discontinuity, with subscript i or j indicating the element (see Fig. 1). These components are 
related to components in the x-y system through 

 , , , , , ,sin cos , cos sinn i x i k y i k t i x i k y i kv v v v v v         (4) 

 , , , , , ,sin cos , cos sinn j x j k y j k t j x j k y j kv v v v v v         (5) 

In Eqs. (4) and (5), k is the angle at which the edge is inclined from the horizontal, 
considering the endpoint specified by subscript i as the origin (Fig. 1). The trigonometric 
functions in (4) and (5) are given by 

 cos , sinj i j i
k k

k k

x x y y

l l
 

 
   (6) 

where lk is the length of the discontinuity evaluated as 

    2 2

k j i j il x x y y     (7) 

Upon substitution of the expressions from Eqs. (3)-(6), the jump condition of Eq. (2) can be 
written as 

        , , , , tanx i j i y i j i x j j i y j j i kv y y v x x v y y v x x            (8) 

where 

        , , , , ,k k t k x i j i y i j i x j j i y j j il v v x x v y y v x x v y y            (9) 

It may be noted that the length lk cancels in the final expressions of the jump condition given 
by Eqs. (8) and (9), which later on simplifies the process of linearization significantly. 

2.2 Energy balance 

Dissipation for the mechanism involving rigid blocks comes exclusively from velocity 
discontinuities, where dissipation for a single discontinuity is calculated as (Chen 1975) 

 ,k k t k kd cl v c    (10) 

In this paper, body forces are neglected, and the rate of work done by external forces involves 
only surface tractions. For simplicity, it is now further assumed that the rate of work done by 
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surface tractions comes only from the (unknown) limit load. That is, fixed tractions outside 
the region where the limit load is applied (i.e., surcharges) are zero. With this the total 
balance of energy requires simply 

  
1

edgesN

k x x y yS
k

c t v t v ds


    (11) 

where tx and ty are, respectively, tractions in the x-direction and y-direction corresponding to 
the limit load and S is the part of the surface over which these tractions are applied. 

Eq. (11) is generally applicable to a problem with no body forces or surcharge, although 
further information must be given in order to define the limit load explicitly. In the example 
considered later in Section 4, it is assumed that vy = 0 and vx = v0, where v0 is an arbitrary 
constant (usually taken as unity for convenience). These assumptions correspond simple 
translation in the x-direction, and for this case total force in the x-direction, denoted P, 
represents the limit load. Upon manipulating Eq. (11), the expression for P is 

 
10

edgesN

y kS
k

c
P t ds

v




    (12) 

Thus, the quantity on the right-hand side of Eq. (12) is identically equal to the limit load that 
one wishes to minimize. Alternatives to Eq. (12) for other loading scenarios can be readily 
derived. 

3 PERTURBATION METHOD 

To determine the optimal location of velocity discontinuities, nodal coordinates defining the 
positions of the discontinuities must be included with the velocities as free variables 
(unknowns). For a single discontinuity the free variables can be combined in a single vector, 
xk, defined as 

 , , , ,

T

k i i j j x i y i x j y jx y x y v v v v   x  (13) 

With a view towards implementing a standard large-scale optimization scheme (e.g., conic 
programming), equality constraints and an objective function that are linear with respect to 
the free variables are required. Since the jump condition and expression of the limit load 
(Eqs. (8) and (12)) are nonlinear with respect to the free variables, it is necessary to work 
with linear approximations rather than the exact expressions. A tacit assumption is that there 
is a known point xk

0 about which the equations can be linearized. Initially, the point xk
0 

corresponds to the solution found using fixed coordinates, i.e., one obtained using well-
established methods for numerical limit analysis (e.g., Krabbenhøft et al., 2005; 
Makrodimopoulos & Martin, 2008), and the concept of the proposed numerical method is to 
“perturb” both velocities and nodal coordinates from this initial solution using linear 
approximations of Eqs. (8) and (12). Upon finding a new solution with updated nodal 
coordinates, the velocities and nodal coordinates may again be perturbed by a small amount, 
and in this way the proposed scheme is incremental. 

3.1 Linear approximations 

In order to linearize the jump condition of Eq. (8), the equality is first written in the form 
F(xk) = 0, where the function F(xk) is defined as 
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          , , , , tank x i j i y i j i x j j i y j j i kF v y y v x x v y y v x x           x  (14) 

The linear approximation of the jump condition is then obtained by a first-order Taylor series 
expansion of F(xk) about the point xk

0, viz. 

      
0

0 0

k k

T

k k k k
k

F
F F




  


x x

x x x x
x

  (15) 

Upon evaluating the derivative and performing some manipulation, Eq. (15) can be expressed 
as 

 
 

 

0 0 0 0 0 0 0 0
, , , , , , , ,

0 0 0 0 0 0 0 0
, , , , tan

k x i y i x j y j x i y i x j y j

x i y i x j y j k

F v y v x v y v x v y v x v y v x

v y v x v y v x D 

                

        

x

x
 (16) 

where 

 0 0 0 0 0 0, , ,j i j i j i j ix x x y y y x x x y y y             (17) 

In Eqs. (16) and (17), the superscript “0” is used to indicate quantities corresponding the 
point xk

0 about which linearization is performed, and the function D(xk) is the linear 
approximation of k defined as 

        
0

0 0

k k

T
k

k k k k k k k
k

D
 




   


x x

x x x x x
x

 (18) 

Upon manipulation, the function D(xk) can be reduced to the following 

 
  0 0 0 0 0 0 0 0 0 0 0 0

, , , , , , , ,

0 0 0 0 0 0 0 0 0 0 0 0
, , , , , , , ,

k x i y i x j y j x i y i x j y j

x i y i x j y j x i y i x j y j

D v x v y v x v y v x v y v x v y

v x v y v x v y v x v y v x v y

              
                

x
 (19) 

where   is the sign function defined as 

 

1 for 0

1 for 0

undefined for 0


 




  
 

 (20) 

The expression for the limit load, Eq. (12), is a linear combination of k (k = 1,2,…,Nedges) 
and is also therefore linearized by replacing k with D(xk). 

An attempt to use Eq. (19) directly will in general lead to difficulties in the numerical 
scheme. The equation is undefined, for example, in the case when velocities are zero in both 
elements adjacent to a discontinuity. Furthermore, it is a basic requisite that dissipation is 
positive. Rather than use the expression for D(xk) from Eq. (19), the following definition is 
therefore adopted 
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  0 0 0 0 0 0 0 0

, , , , , , , ,

0 0 0 0 0 0 0 0
, , , ,

k x i y i x j y j x i y i x j y j

x i y i x j y j

D v x v y v x v y v x v y v x v y

v x v y v x v y

               

       

x
 (21) 

Unlike the linear approximation, Eq. (21) leads to a robust numerical formulation even when 
the jump in the tangential component of velocity, vt,k, becomes zero or changes sign. It may 
be noted that Eq. (21) is identical to the linear approximation of k provided vt,k does not 
change sign during a perturbation step. 

3.2 Optimization and solution stepping 

As indicated in the introduction to Section 3, the concept of the numerical formulation is to 
perform a number of steps in which the nodal coordinates and velocities are perturbed by a 
small amount, starting from an initial solution corresponding to a predefined mesh. Each 
perturbation step corresponds to a constrained optimization problem where the goal is to 
minimize the limit load (Eq. (12) with k replaced by D(xk)) subject to the equality 
constraints corresponding to jump conditions (F(xk) = 0, where F(xk) is given by Eq. (16)). 

The motivation for using a relatively large number of small perturbations, as opposed to a 
small number of large perturbations, is twofold. First, the linear approximations from Section 
3.1 are valid only for small variations in the free variables. Second, the connectivity of the 
element mesh must remain unchanged as the nodal coordinates are adjusted, and allowing 
nodal coordinates to change substantially will invariably lead to mesh degeneration (e.g., 
elements with negative volume). By arriving at a final solution through a number of small 
steps, mesh degeneration is not necessarily prevented, but the method will at least furnish the 
best possible solution prior to the mesh becoming invalid. To ensure that the adjustment to 
the solution is small in each step, the following radial constraint on the nodal coordinates is 
introduced 

    2 20 0
max,m m m m mx x y y      (22) 

where m indicates the global node number (m = 1,2,…,Nnodes, where Nnodes is the total number 
of nodes) and max,m is a specified maximum radius. The parameter max,m should be taken as 
a small fraction of the element length and may in general be different for each node. 

In this paper optimization was performed using the Matlab toolbox SeDuMi. Among other 
functions, this software package efficiently solves large-scale constrained optimization 
problems using second-order cone programming (Sturm 1999), which accommodates so-
called “quadratic, second-order cone constraints” of the type given in Eq. (22). As discussed 
by Lyamin et al. (2004), such constraints also can be introduced to handle the absolute value 
appearing in the equations for the jump condition and dissipation. This is accomplished by 
everywhere replacing D(xk) with the variable k (k = 1,2,…,Nedges), which is constrained as 
follows 

 2
k k   (23) 

where 

 
0 0 0 0 0 0 0 0
, , , , , , , ,

0 0 0 0 0 0 0 0
, , , ,

k x i y i x j y j x i y i x j y j

x i y i x j y j

v x v y v x v y v x v y v x v y

v x v y v x v y

                

       
 (24) 
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The variable k is simply the expression appearing in the absolute value in Eq. (21), such that 
D(xk) = |k|. In order to force the algorithm to find a solution with k = D(xk), the expression 
for the limit load (Eq. (12)) is replaced by 

 
10

edgesN

k
k

c
P

v




   (25) 

By using Eq. (25) as the objective function, the global minimum for the problem corresponds 
to k = D(xk) by construction. 

To write the optimization problem for a perturbation step in the canonical form used by 
SeDuMi and other solvers, the following global vector of unknowns is defined 

 
TT T T T

crd vel     x x x x x  (26) 

where 

 1 1 2 2 ...
nodes nodes

T

crd N Nx y x y x y   x  (27) 

 ,1 ,1 ,2 ,2 , ,...
elems elems

T

vel x y x y x N y Nv v v v v v   x  (28) 

 1 1 2 2 ...
edges edges

T

N N         x  (29) 

 max,1 ,1 ,1 max,2 ,2 ,2 max, , ,...
nodes nodes nodes

T

x y x y N y N y N            x  (30) 

In Eq. (28), Nelems is the total number of elements, and in Eq. (30) the variables x,m and y,m 
(m = 1,2,…,Nnodes) are defined as 

 0
,x m m mx x    (31) 

 0
,y m m my y    (32) 

The canonical form of the optimization problem is then 

 2

2 2
max, , ,

minimize

such that

for 1, 2,...,

for 1,2,...,

T

k k edges

m x m y m nodes

k N

m N

 

  



 

  

c x

Ax b
 (33) 

Referring to the objective function of Eq. (25), the vector of constants c is given by 

 
 0 1 2 1 31 2 2

[ 0 0 ... 0 1 0 1 0 ... 1 0 0 0 ... 0 ]

edges nodesnodes elems

T

N NN N

c

v
  

c     (34) 

The matrix of constants A and vector of constants b are determined by assembling (1) jump 
conditions for all discontinuities, (2) definitions of auxiliary variables, and (3) constraints 
required to fix nodal coordinates and velocities for a particular problem. The jump conditions 
are simply F(xk) = 0 (k = 1,2,…,Nnodes), where F(xk) is given by Eq. (16) with D(xk) replaced 
by k. The auxiliary variables are k, x,m, and y,m, and they are defined by Eqs. (24), (31), 
and (32), respectively. 
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An arbitrary number of perturbation steps can be performed in the analysis of a problem. 
In each step, the variables with a superscript “0” are regarded as known quantities from the 
previous step, and the solution of (33) yields the values of unknowns at the end of the step. A 
natural stopping criterion in this stepping procedure is for the variation of the limit load 
within an increment to be below some tolerance, although other criteria can be implemented. 

Finally, it is noted that by fixing all nodal coordinates as the values at the beginning of a 
perturbation step (xi = xi

0, yi = yi
0, etc.), exact expressions of the jump condition and energy 

balance (Eqs. (8) and (12)) are recovered from the linear approximations, and in this case, the 
only unknowns are the velocities. Fixing the nodal coordinates thus provides a means for 
obtaining a solution for the initial mesh, and it can also be used to obtain an exact solution 
(within numerical tolerances) for the limit load at any solution step. 

4 EXAMPLE 

In this section the proposed numerical formulation is applied to a classical problem in soil 
mechanics: passive earth pressure behind a smooth retaining wall. The wall has height H and 
translates into weightless material with friction angle  = 10º. For simplicity, the maximum 
variation in nodal coordinates the same for all nodes and fixed at H/100 (i.e, max,m = H/100 
for m = 1,2,…,Nnodes). 

The initial finite element mesh for the problem is shown in Fig. 2 (indicated by “step 
number = 0”). Superimposed on the mesh are the element velocities obtained by fixing nodal 
coordinates at their initial values in the numerical formulation. The collapse mechanism for 
the initial mesh is considerably different than the one predicted analytically in the Coulomb 
theory of lateral earth pressure, which corresponds to the single discontinuity indicated by a 
dashed line in Fig. 2. 

Fig. 2 also shows the finite element mesh and velocities after 20, 40, and 60 perturbation 
steps. The collapse mechanism becomes progressively closer to the Coulomb solution with 
the number of perturbation steps, and when the step number is 60, it is virtually 
indistinguishable from the analytical result. 

Fig. 3 compares the limit load evaluated numerically with the analytical solution of P/cH ≈ 
2.3835. The limit load evaluated for the initial mesh is P/cH ≈ 13.0965, over 5 times larger 
than the analytical prediction, but it rapidly approaches the analytical result as the stepping 
procedure proceeds. At step number 55, the numerical and analytical predictions are in 
agreement to all four decimal places given. 

5 CONCLUDING REMARKS 

The paper presents a numerical method for upper bound limit analysis in which both 
velocities and the location of velocity discontinuities are optimized simultaneously. The 
method is based on successively perturbing the velocities and nodal coordinates, starting 
from solution that can be obtained by conventional techniques for numerical limit analysis. 
The formulation presented is for collapse mechanisms consisting of sliding rigid elements 
(blocks) separated by velocity discontinuities, although it is expected that the approach can be 
generalized to finite element formulations involving continuous deformation within elements. 
Simulation of a benchmark problem in soil mechanics indicates that the method is robust and 
capable of recovering the exact (analytical) solution even when the collapse mechanism for 
the initial finite element mesh is significantly different from the optimal one. Additional 
verifications and analysis of the numerical formulation will be given in an upcoming journal 
paper (Hambleton & Sloan, 2011).  
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Fig. 2. Finite element mesh and velocities at various perturbation steps for passive earth pressure problem 

 

Fig. 3. Limit load as a function of the number of perturbation steps for passive earth pressure problem 
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The concept behind the proposed method is of potentially great benefit in contemporary 
numerical limit analysis techniques (cf. Lyamin & Sloan, 2002; Krabbenhøft et al., 2005; 
Makrodimopoulos & Martin, 2008), and the specific formulation presented provides a 
valuable alternative to the classical analytical approach to upper bound limit analysis. 
Namely, the method can be used to compute upper bounds on collapse loads without the need 
to geometrically construct kinematically admissible mechanisms, which can be a 
cumbersome process when more than a few rigid blocks are included. Even when a 
kinematically admissible mechanism can be ascertained analytically, a nonlinear optimization 
scheme is often needed to determine the optimal values of the free variables involved, and 
this too is usually a nontrivial endeavor. It should be evident that the formulation proposed in 
this paper can be applied to mechanisms involving a virtually arbitrary number of elements, 
and the solution to the corresponding sequence of optimization problems can be found in a 
matter of seconds using second-order cone programming.  
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